ÍNDICE

Item	Página
1. Introdução	03
2. Características	03
3. Itens inclusos na embalagem	03
4. Especificações	
4.1 Medição	04
4.2 Saídas de transmissão	05
4.3 Comunicação serial	05
4.4 Generalidades	06
4.5 Codificação	07
5. Instalação	08
5.1 Mecânica	08
5.2 Elétrica	10
6. Painel de operação	
7. Parametrização	
7.1 Tela principal	
7.2 Configuração	15
8. Comunicação serial	16
8.1 Configuração de fábrica	
8.2 Tabela de registros	
8.3 Informações sobre o transmissor	
9. Aplicativo Contemp Connect	
10. Cuidados especiais com o sensor	
11. Indicações de falhas	
12. Correção do ponto de orvalho	20
13 Garantia	21

Instru*Fiber*

Rua Ziba, 44 Sala 03 | Vila Nina | São Paulo | SP 02833-010 | Fone: (11) 4172-0606 | Fone: 11 2538-5950

Site: www.instrufiber.com.br | E-mail: contato@instrufiber.com.br

1. INTRODUÇÃO

O transmissor de temperatura e umidade S501 é um equipamento microprocessado indicado para medição precisa de Temperatura, Umidade Relativa e Ponto de Orvalho, disponibilizado em quatro modelos: Básico, Display, Comunicação Serial e Display + Comunicação Serial.

O modelo básico permite a medição de temperatura, umidade relativa e ponto de orvalho com transmissão em dois loops de corrente isolados.

Nos modelos com display, é possível a visualização da temperatura, umidade relativa e ponto de orvalho em display e leds de sinalização.

Nos modelos com comunicação serial, é possível a conexão do transmissor a uma rede de comunicação MODBUS, permitindo configuração e monitoramento via software do usuário ou via aplicativo Contemp Connect.

Para os modelos Básico e Display, é disponibilizado o Cabo Configurador D201 (especificar no pedido) para configuração de escalas, calibração e monitoramento utilizando o aplicativo Contemp Connect.

2. CARACTERÍSTICAS

- Medição de três grandezas: Temperatura, Umidade Relativa e Ponto de Orvalho.
- Quatro modelos: Básico, Display, Comunicação Serial, Display + Comunicação Serial.
- Fixação em parede ou duto.
- · Dois loops de corrente isolados e configuráveis.
- Alimentação pelo loop de corrente (modelo básico).
- Monitoramento e configuração via software do usuário ou aplicativo Contemp Connect.

3. ITENS INCLUSOS NA EMBALAGEM

- 1 Transmissor.
- 1 Manual de instruções.
- 1 Flange para fixação em duto (quando especificado "duto" no pedido).

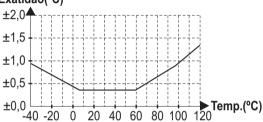
4. ESPECIFICAÇÕES

4.1 Medição

Temperatura:

Faixa de medição do sensor

0 a 60°C ou -40 a 120°C (especificar no pedido

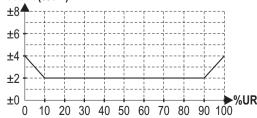

seguindo a codificação do produto)

Resolução 14 bits (Display - 0,1°C / Contemp Connect - 0,01°C)

Cinco a trinta segundos Duas por segundo

Tempo de resposta do sensor Atualização da medição

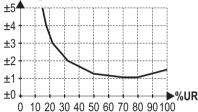
Exatidão(°C)


Umidade:

Faixa de medição 0 a 100%

Resolução 12 bits (Display - 0,1% / Contemp Connect - 0,05%)

Tempo de resposta do sensor Oito segundos
Atualização da medição Duas por segundo


Exatidão(%UR)

Ponto de Orvalho:

Faixa de medição -100 a 60°C Resolução Display - 0,1°C Atualização da medição Duas por segundo

4.2 Saídas de transmissão

Quantidades Duas saídas configuráveis para Temperatura,

Umidade, ou Ponto de Orvalho

Escala 4-20mA Resolução 12 bits

Impedância (ohms) \leq (V loop - 7,5) / 0,02

Exatidão 0,25% F.E.

4.3 Comunicação Serial

Padrão elétrico RS-485
Protocolo MODBUS-RTU

Velocidades 1200, 2400, 4800, 9600, 19200, 38400, 57600bps

Distância máxima 1200m

Qtd. máxima em rede 247 transmissores. A cada 30 transmissores é

necessário instalar um repetidor

 Isolação galvânica
 500Vrms

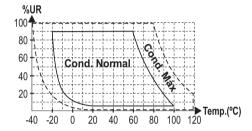
 Tamanho da palavra
 8 bits

 № de stopbits
 1 ou 2

 Tempo de resposta
 100ms

4.4 Generalidades

Alimentação Modelo Básico - Fonte do loop (a 2 fios): 7,5 a 36Vcc


Demais modelos - Fonte externa: 24Vcc ±10%

Consumo Modelo Básico: ≤ 4mA

Modelo Comunicação Serial: ≤ 10mA

Modelo Display, Display + Com. Serial: ≤ 20mA

Condição de Operação do sensor:

Temp. operação (eletrônica) -10°C a 60°C

U.R. de operação (eletrônica) 5% a 95% sem condensação

Material da caixaABS e PolicarbonatoGrau de proteçãoCaixa da eletrônica - IP65

Filtro do sensor - IP40

Peso aproximado Parede - 180g

Duto haste ABS 300mm - 230g Duto haste INOX 150mm - 310g Duto haste INOX 300mm - 370g

Isolação galvânica Entre loops - 500Vrms

Loops e comunicação - 500Vrms Alimentação e comunicação - 500Vrms

4.5 Codificação

1	2	3	4	5	6	7	8	9	10	
S	5	0	1		-		S	-		l

5 - Fixação

Α	Ambiente - Parede (0 a 60°C)			
D	Duto - Haste ABS 300mm (0 a 60°C)			
ı	Duto - Haste INOX 316 150mm (-40 a 120°C			
- 1	Duto - Haste INOX 316 300mm (-40 a 120°C			

7 - Modelo

0	Básico
1	Display
2	Comunicação Serial
3	Display + Comunicação Serial

8 - Versão de Firmware

S standard

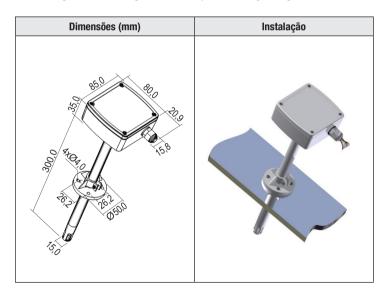
10 - Certificado de Calibração

0	Nenhum
1	Calibração RBC
2	Calibração rastreada

Exemplo: Transmissor com display para fixação em parede: \$501A-1S-0

Obs.: É vendido à parte o Cabo Configurador D201 (aplicável aos modelos Básico e Display) para a configuração de escalas, calibração e monitoramento utilizando o aplicativo Contemp Connect.

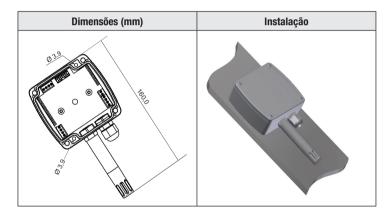
5. INSTALAÇÃO


5.1 Mecânica

A instalação do transmissor pode ser feita em parede ou duto, conforme especificado na codificação do produto adquirido.

Instalação em Duto

- 1° Realizar quatro furos de diâmetro menor que 4mm no duto para fixação do flange.
- 2º No centro dos quatro furos de fixação do flange, realizar um furo para passagem da haste.
- 3° Fixar o flange sobre o duto utilizando quatro parafusos. Os parafusos de fixação não acompanham o transmissor.
- 4° Encaixar a haste do transmissor dentro do flange. Travar a haste apertando o parafuso lateral do flange.

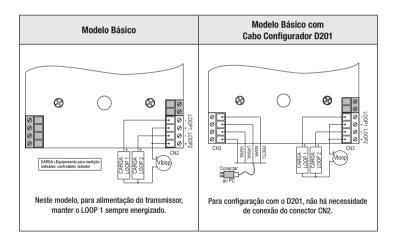

Para montagem mecânica seguir as cotas disponíveis na figura seguinte.

Instalação em Parede

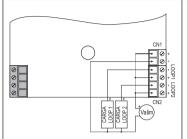
- 1º Retirar os quatro parafusos de fixação da tampa frontal do transmissor. Retirar a tampa.
- 2º Realizar dois furos de diâmetro menor que 4mm na superfície sobre a qual será instalado o transmissor.
- 3° Fixar a caixa da eletrônica sobre a superfície utilizando dois parafusos. Os parafusos de fixação não acompanham o transmissor.
- 4º Re-encaixar a tampa frontal do transmissor e parafusar os quatro parafusos de fixação.

Para montagem mecânica seguir as cotas disponíveis na figura seguinte.

5.2 Elétrica

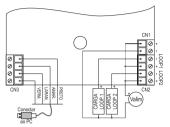

As conexões com o transmissor são feitas através de conectores de bornes parafusáveis instalados dentro da caixa da eletrônica sobre placa de circuito impresso.

Os conectores permitem ligar os dois loops de corrente, fonte externa, Cabo Configurador D201 e o cabo de comunicação serial. A passagem da fiação para fora da caixa é feita via prensa cabos.


Importante

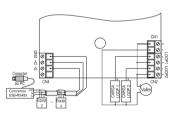
Os loops 1 e 2 são configuráveis para transmissão de temperatura, umidade ou ponto de orvalho via aplicativo **Contemp Connect** ou software do usuário.

Independente da versão de firmware, o loop 1 é configurado de fábrica para umidade e o loop 2 para temperatura.


Modelo Display

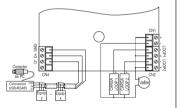
Neste modelo, a fonte de alimentação do transmissor pode ser utilizada também para a alimentação dos loops. Para conexões elétricas deste modelo, desencaixar o display da placa base.

Obs: Valim=24Vcc +10%


Modelo Display com o Cabo Configurador D201

Para configuração com o D201, não há necessidade de conexão dos conectores CN1 e CN2. Com o D201 conectado ao PC, o display do transmissor é mantido apagado. Para conexões elétricas deste modelo, desencaixar o display da placa base.

Obs: Valim=24Vcc ±10%


Modelo Comunicação Serial

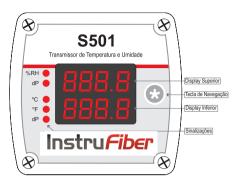
Neste modelo, a fonte de alimentação do transmissor pode ser utilizada também para a alimentação dos loops.

Obs: Valim=24Vcc ±10%

Modelo Display + Comunicação Serial

Neste modelo, a fonte de alimentação do transmissor pode ser utilizada também para a alimentação dos loops. Para conexões elétricas deste modelo, desencaixar o display da placa base.

Obs: Valim=24Vcc ±10%


Cuidados na instalação dos sinais de instrumentação e fonte

- Ao abrir o transmissor para conexão da fiação, deve-se evitar o contato com a placa de circuito impresso a fim de se evitar danos causados por descarga eletrostática.
- Para conexão dos loops de corrente, fonte de alimentação e cabo de comunicação serial, utilizar cabo manga blindado com fita de poliéster aluminizado, diâmetro externo mínimo de 5mm e máximo de 5,8mm. Seguir este cuidado para garantir a vedação especificada neste manual.
- A alimentação deve ser feita através de fonte própria para instrumentação.
- Para minimizar a susceptibilidade eletromagnética do equipamento é recomendado o uso de filtros RC em paralelo às bobinas de contatores ou solenóides.

Cuidados na instalação das redes para comunicação RS-485

- Utilizar cabo de par trançado com blindagem. Comprimento máximo do cabo: 1200 metros.
- As derivações para outros equipamentos devem ser feitas nos bornes do conector de comunicação serial do transmissor. Não utilizar emenda tipo "T" no cabo, a fim de se evitar perda na qualidade do sinal elétrico.
- Em função do comprimento do barramento e ambiente de aplicação, devem ser avaliados os pontos de aterramento da blindagem do cabo.
- A utilização de resistores de terminação também se faz necessário para uma comunicação veloz e de boa qualidade. Como regra geral, instalar dois resistores, um em cada ponta da rede, no valor de 120 Ohms por ¼ de Watt.

6. PAINEL DE OPERAÇÃO

Nos modelos Display e Display + Comunicação Serial o transmissor conta com display duplo, cinco leds e tecla que permite a seguinte navegação:

Display superior	Na tela principal indica o valor das grandezas medidas. No bloco de configuração indica o nome dos parâmetros.
Display inferior Na tela principal indica o valor das grandezas medidas. No bloco de configuração indica o valor dos parâmetros.	
Sinalizações	Sinalizam a unidade dos valores indicados na tela principal.
Tecla de navegação	Navega entre os parâmetros de configuração e configura individualmente cada parâmetro.

7. PARAMETRIZAÇÃO

O transmissor possui uma tela principal e um bloco de parâmetros:

Tela principal Apresenta nos displays os valores das grandezas medida nos leds de sinalização a unidade dos valores indicados.	
Configuração	Ajuste das características operacionais do transmissor.

7.1 Tela principal

Seguem os possíveis tipos de tela principal:

Obs. 1: A temperatura e o ponto de orvalho podem ser indicadas em °C ou °F.
Obs. 2: O termo Ponto de Orvalho define a temperatura na qual o vapor d'água contido na porção de ar de um determinado local sofre condensação. Quando a temperatura está abaixo do Ponto de Orvalho, normalmente dá-se a formação de névoa seca ou neblina. A temperatura e ponto de orvalho são indicados com a mesma unidade.

Nas tabelas que seguem estão descritos todos os parâmetros do transmissor, porém na navegação só serão visualizados aqueles com função ativa.

7.2 Configuração

Permite configurar os parâmetros de comunicação serial, unidades de medida e o tipo de tela principal. Para acessar os parâmetros deste bloco, pressionar a tecla * até o display superior indicar SCrn.

- * Iniciar incremento automático do valor do parâmetro.
- * Parar incremento automático no valor desejado.
- ★ + ★ Pular para próximo parâmetro.

Para retornar à tela principal, navegar até o ultimo parâmetro disponível.

Display Superior	Descrição	Ajuste	Esc.
SCrn	Tipo de tela principal	Tabela 1	
unit Unidade para medição de temperatura e C, F ponto de orvalho		C, F (°C, °F)	
3		1.2, 2.4, 4.8, 9.6, 19.2, 38.4, 57.6	Kbps
PAr Paridade da comunicação		oFF, Odd, EvEn	
Addr Endereço na rede de comunicação		1 a 247	
vEr	Versão do firmware - somente leitura		

Tabela 1	Tipo de tela principal	
rH.tE	Umidade e Temperatura	
dP.tE	Ponto de Orvalho e Temperatura	
rH.dP	Umidade e Ponto de Orvalho	
tE	Temperatura	
rH	Umidade	
dP	Ponto de Orvalho	

Obs.: A versão de firmware do transmissor poderá ser alterada sem aviso prévio.

8 COMUNICAÇÃO SERIAL

Para aplicações que necessitem a conectividade do transmissor a redes industriais com padrão MODBUS-RTU são disponibilizadas os modelos Comunicação Serial e Display + Comunicação Serial. O transmissor opera como escravo e deve ser conectado à rede de monitoramento e configuração do próprio usuário ou ao aplicativo Contemp Connect via cabeamento serial padrão RS-485.

8.1 Configuração de fábrica

A configuração de fábrica para os parâmetros de comunicação é:

Addr = 1

bAud = 9600

PAr = oFF

Nos modelos com display é possível a configuração dos parâmetros de comunicação via tecla de navegação. Para os modelos sem display, a configuração de parâmetros é feita somente via software do usuário ou aplicativo **Contemp Connect.**

Para efetuar a atualização dos parâmetros de comunicação, ao alterá-los, desligar e religar o transmissor.

8.2 Tabela de registros

Para interface do transmissor com software do usuário, segue tabela de registros explicativa com os endereços dos registros, limites de ajuste, valores padrão de fabrica e controle de leitura (R) e escrita (W). Para escrita de registro deve ser utilizado o comando MODBUS 0x06 e, para leitura, o comando 0x03.

Reg.	Descrição	Mínimo	Máximo	Padrão	R/W
1	Valor da temperatura*	-4000	12000	-	R
2	Valor da umidade*	0	10000	-	R
3	Valor do ponto de orvalho*	-10000	6000	-	R
4	Offset da temperatura*	-5000	5000	0	R/W
5 Offset da umidade*		-1000	1000	0	R/W
6 Valor mínimo da faixa de temperatura*		-4000	12000	0	R/W
7	Valor máximo da faixa de temperatura*	-4000	12000	6000	R/W
8	Valor mínimo da faixa de umidade*	0	10000	0	R/W

Reg. (cont.)	Descrição	Mínimo	Máximo	Padrão	R/W
9	Valor máximo da faixa de umidade*	0	10000	10000	R/W
10	Valor mínimo da faixa de ponto de orvalho*	-10000	6000	-10000	R/W
11	Valor máximo da faixa de ponto de orvalho*	-10000	6000	6000	R/W
12	Seleção da Variável para o Loop 1	0 (Umidade)	2 (Ponto de orvalho)	1 (Temperatura)	R/W
13	Seleção da Variável para o Loop 2	0 (Umidade)	2 (Ponto de orvalho)	0 (Umidade)	R/W
14	Unidade para medição de temperatura e ponto de orvalho	0 (°C)	1 (°F)	0 (°C)	R/W
15 Tipo de Tela Principal (Tabela 2)		0	5	0	R/W
16	16 Endereço na rede de comunicação		247	1	R/W
17	Velocidade da comunicação (Tabela 3)	0	6	3	R/W
18	Paridade da comunicação (Tabela 4)	0	2	0	R/W
20-27	Nome do dispositivo	0	0xFFFF	0	R/W

Tabela 2	Tipo de tela principal	
0	Umidade e Temperatura	
1	Ponto de Orvalho e Temperatura	
2	2 Umidade e Ponto de Orvalho	
3	Temperatura	
4	Umidade	
5	Ponto de Orvalho	
	1 onto do orvanio	

Tabela 3	Velocidade da comunicação
0	1200 bps
1	2400 bps
2	4800 bps
3	9600 bps
4	19200 bps
5	38400 bps
6	57600 bps

Tabela 4	Paridade
0	Sem paridade - 2 Stop bits
1	Ímpar - 1 Stop bit
2	Par - 1 Stop bit

Obs.:

- 0 número dos registros segue o padrão ONE BASED.
- Os registros marcados com * devem ser representados com duas casas decimais.
 Exemplo: -1000 significa -10.00.
- No caso de alteração dos parâmetros de comunicação, para estabelecer conexão na nova configuração, reconfigurar a parametrização do software de alto nível.
- Cada byte de cada registro do nome do dispositivo é um caracter ASCII.
- Para velocidade de 57600bps, configurar paridade para NENHUMA.

8.3 Informações sobre o transmissor

Para informações sobre o transmissor, é disponibilizado na função MODBUS 0x11 - Read Slave ID a seguinte estrutura de ID:

BYTES	1	2	3	4	5	6	7 a 12						
GRUPOS	NOME EQUIPAMENTO							ESPECIFICAÇÃO					
RESPOSTA	S	5	0	1	*	0X20	0X20	0X20	0X20	0X20	0X20	0X20	

(*) BYTE 5
A - Ambiente (Parede)
D - Duto

Obs.: Os caracteres estão no formato ASCII.

Para maiores informações sobre o protocolo MODBUS consultar o site www.modbus.org.

13	14	15	16	17	18	19	20	21	22	23 a 32	
VERSÃO FW				MODELO				VAGO		CÓD. BARRA	
v	х	у	Z	*	0x20	0x20	0x20	0x20	0x20	10 caracteres	

(20

x, y, z	(*) BYTE 17			
Versão FW	0 - Básica			
	1 - Display			
	2 - Comunicação Serial			
	3 - Display + Comunicação Serial			

9. APLICATIVO CONTEMP CONNECT

Para configuração e monitoramento do transmissor, é disponibilizado gratuitamente o aplicativo Contemp Connect. Para download, acessar www.contemp.com.br/suporte-tecnico.

Nota: Para a utilização do aplicativo nos modelos Básico e Display, é necessário incluir o Cabo Configurador D201 no pedido.

10. CHIDADOS ESPECIAIS COM O SENSOR

O sensor de temperatura e umidade situado dentro do filtro é responsável pela medição dos valores de umidade e temperatura e sua calibração é diretamente afetada pela exposição a condições extremas de operação ou a vapores químicos por tempo prolongado. Para o restabelecimento da calibração:

- Abrir a tampa do transmissor e desconectar os cabos do sensor (CN4).
- · Retirar o filtro do sensor.
- Retirar cabo + sensor do prensa-cabos.
- Lavar o sensor com água caso haja partículas solidas depositadas sobre o mesmo.
- Manter o sensor em forno a 102°C (±3°C) e U.R menor que 5% por 10 horas.
- Manter o sensor em ambiente controlado a 25°C (±5°C) e U.R aproximadamente em 75% por 12 horas.
- Recolocar cabo + sensor através do prensa-cabos.
- Conectar os cabos do sensor (CN4) e recolocar a tampa do transmissor, fixando-a corretamente para garantir a vedação.
- Recolocar o filtro do sensor.

11. INDICAÇÕES DE FALHAS

Caso ocorra algum erro de conexão ou defeito no sensor, o display superior indicará Err e as saídas dos loops de corrente ficarão com valor inferior a 4mA.

Nesta condição, os registros MODBUS para os valores de temperatura, umidade e ponto de orvalho ficarão em **OXFFFF**.

12. CORREÇÃO DO PONTO DE ORVALHO

A medição do ponto de orvalho é obtida matematicamente a partir de uma fórmula que relaciona a temperatura e a umidade relativa, logo, erros na medição destas duas grandezas físicas acarretam em erro na medição do ponto de orvalho.

Particularmente para umidade relativa, erros na medição desta grandeza acarretam em erros significativos na medição do ponto de orvalho.

Para faixa de medição de 10% U.R a 100% U.R, os erros na medição do ponto de orvalho podem chegar à 5°C. Já para faixa de 0% U.R a 10% U.R, pode haver erros na ordem de 60°C.

Para a correção de erros de medição na faixa mais crítica, sugere-se medir a umidade relativa com um padrão confiável e ajustar o parâmetro OFFSET de umidade relativa via aplicativo Contemp Connect ou software do usuário.

13. GARANTIA

O fabricante garante que os transmissores relacionados na Nota Fiscal de venda estão isentos de defeitos e cobertos por garantia de 12 meses a contar da data de emissão da referida Nota Fiscal

Ocorrendo defeito dentro do prazo da garantia, os transmissores devem ser enviados à nossa fábrica, acompanhados de NF de remessa para conserto, onde serão reparados ou substituídos sem ônus desde que comprovado o uso de acordo com as especificações técnicas contidas neste manual

O Que a Garantia não cobre

Despesas indiretas como: fretes, viagens e estadias.

O fabricante não assume nenhuma responsabilidade por qualquer tipo de parada, dano, acidente, ou lucro cessante decorrentes de falha no transmissor, tão somente se comprometendo a consertar ou repor os componentes defeituosos, quando comprovado o uso dentro das especificações técnicas.

Perda da Garantia

A perda de garantia se processará caso haja algum defeito no transmissor e seja constatado que tal fato ocorreu devido à instalação elétrica inadequada e/ou o transmissor ter sido utilizado em ambiente agressivo, ter sido modificado sem autorização, ter sofrido violação ou ter sido utilizado fora das especificações técnicas.

O fabricante reserva-se no direito de modificar qualquer informação contida neste manual sem aviso prévio.

Rua Ziba, 44 Sala 03 | Vila Nina | São Paulo | SP 02833-010 | Fone: (11) 4172-0606 | Fone: 11 2538-5950

Site: www.instrufiber.com.br | E-mail: contato@instrufiber.com.br